Дискриминатор частоты оптимальный при малом отношении сигнал/шум — различия между версиями

Материал из SRNS
Перейти к: навигация, поиск
(Дискриминационная характеристика)
(Дискриминационная характеристика)
Строка 23: Строка 23:
 
== Дискриминационная характеристика ==
 
== Дискриминационная характеристика ==
  
Дискриминационная характеристика:
+
Дискриминационная характеристика <ref name="KorPhD">[[Публикация:Корогодин 2013 Разработка алгоритмов обработки сигналов СНС в аппаратуре определения угловой ориентации объектов]]</ref>:
  
  
Строка 31: Строка 31:
  
  
Крутизна при нулевой ошибке по частоте:
+
Крутизна при нулевой ошибке по частоте <ref name="KorPhD">[[Публикация:Корогодин 2013 Разработка алгоритмов обработки сигналов СНС в аппаратуре определения угловой ориентации объектов]]</ref>:
  
 
<math>S_D=\frac{1}{12}A_{IQ}^{2}{{T}^{2}}</math>
 
<math>S_D=\frac{1}{12}A_{IQ}^{2}{{T}^{2}}</math>

Версия 14:19, 3 ноября 2015

Содержание

Дискриминатор описывается выражением

u_{D \omega, k} = I_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k})I'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) + Q_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k})Q'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}),

где
I_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
Q_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
I'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = -\sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)(l-1)T_d\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
Q'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)(l-1)T_d\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
L=\frac{T}{{{T}_{d}}} - число отсчетов за время T интегрирования в корреляторе, T_d - интервал дискретизации.

Особенности работы

Для работы дискриминатора требуется формирование особенных квадратур I'_k, Q'_k. Они представляют собой обычные квадратуры, умноженные на линейно-возрастающую функцию (l-1)T_d (индекс времени l растет - множитель растет). Аппаратно такой коррелятор не реализован. Есть предложение [1] заменить честный расчет I'_k, Q'_k суммой взвешенных корреляционных сумм:

I'_{k}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)\approx -{{T}_{1}}\sum\limits_{n_{1}^{{}}=1}^{N_{1}^{{}}}{n_{1}^{{}}{{Q}_{{{n}_{1}},k}}},

Q'_{k}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)\approx {{T}_{1}}\sum\limits_{n_{1}^{{}}=1}^{N_{1}^{{}}}{n_{1}^{{}}{{I}_{{{n}_{1}},k}}}.

По этой методике весь интервал интегрирования в корреляторе разбивается на N_1 равных частей длительностью T_1. На этих малых интервалах рассчитываются традиционные корреляционные суммы I_{n_1, k}, Q_{n_1, k}, а потом проводится их взвешенное суммирование. Чем больше N_1, тем точнее оказывается приведенная методика. Допустим "большой" коррелятор копит T = 10 мс, тогда целесообразно выбрать T_1 = 1 мс и N_1 = 10.

Дискриминационная характеристика

Дискриминационная характеристика [1]:


U\left( \delta \omega  \right)=A_{IQ}^{2}T\frac{\text{sinc}\left( \frac{\delta \omega T}{2} \right)}{\delta \omega T}\left( \text{sinc}\left( \frac{\delta \omega T}{2} \right)-\cos \left( \frac{\delta \omega T}{2} \right) \right),

где A_{IQ} = \frac{AL}{2}, A - амплитуда сигнала y(t_{k,l}), L - количество отчетов, накапливаемых в корреляторе, \delta\omega - разность истинного и опорного параметров.


Крутизна при нулевой ошибке по частоте [1]:

S_D=\frac{1}{12}A_{IQ}^{2}{{T}^{2}}


Вид дискриминационной характеристики для разных времен накопления и q_{c/n0} = 50 дБГц:

20151103 FreqDiskr.png

Флуктуационная характеристика

Дисперсия шума эквивалентного наблюдения частоты, т.е. шума с выхода дискриминатора, пересчитанного к его входу при нулевой расстройке по частоте [2]:

D_{\widetilde{\eta}_\omega} = \frac{6}{q_{c/n_0}T^3}(1+\frac{1}{q_{c/n_0}T}).

Сравнение с другими ЧД

Интересно сравнить дисперсию шумов по входу для различных дискриминаторов:

 D_1 = D_{\widetilde{\eta}_\omega} = \frac{1}{q_{c/n_0}T_{cross}^3}(1+\frac{1}{2q_{c/n_0}T_{cross}}).
  • Дисперсия шума на входе рассматриваемого в этой статье дискриминатора:
 D_2 = D_{\widetilde{\eta}_\omega} = \frac{6}{q_{c/n_0}T_{optim}^3}(1+\frac{1}{q_{c/n_0}T_{optim}}).

Пусть cross дискриминатор реализован по схеме без перекрытия, тогда T_{optim} = 2T_{cross} и

\frac{D_2}{D_1} = \frac{6}{8},

или для СКО:

\sigma_2 = 0.866*\sigma_1.

Дискриминатор cross проигрывает I_kI'_k+Q_kQ'_k около 15% по СКО во всем диапазоне с/ш. На рисунке ниже приведен график зависимости СКО эквивалентных шумов представленных ЧД от отношения сигнал/шум q_{c/n0}

Ошибка создания миниатюры: convert: unable to open image `/app/images/0/07/20151029__.png': No such file or directory @ error/blob.c/OpenBlob/2641.
convert: no images defined `/tmp/transform_2d7e381c79a2-1.png' @ error/convert.c/ConvertImageCommand/3044.

Листинг модели

Ссылки

  1. 1,0 1,1 1,2 Публикация:Корогодин 2013 Разработка алгоритмов обработки сигналов СНС в аппаратуре определения угловой ориентации объектов
  2. Публикация:Корогодин 2013 Потенциальные характеристики оценивания частоты в некогерентном приемнике
Персональные инструменты
Пространства имён

Варианты
Действия
SRNS Wiki
Рабочие журналы
Приватный файлсервер
QNAP Сервер
Инструменты